Does roughening of rock-fluid-rock interfaces emerge from a stress-induced instability?
نویسندگان
چکیده
Non-planar solid-fluid-solid interfaces under stress are very common in many industrial and natural materials. For example, in the Earth’s crust, many rough and wavy interfaces can be observed in rocks in a wide range of spatial scales, from undulate grain boundaries at the micrometer scale, to stylolite dissolution planes at the meter scale. It is proposed here that these initially flat solid-fluid-solid interfaces become rough by a morphological instability triggered by elastic stress. A model for the formation of these unstable patterns at all scales is thus presented. It is shown that such instability is inherently present due to the uniaxial stress that promotes them, owing to the gain in the total elastic energy: the intrinsic elastic energy plus the work of the external forces. This is shown explicitly by solving the elastic problem in a linear stability analysis, and proved more generally without having resort to the computation of the elastic field. PACS. 91.32.De Crust and lithosphere – 68.35.Fx Diffusion; interface formation – 02.30.Jr Partial differential equations – Plasticity, diffusion, and creep Plasticity, diffusion, and creep – 91.60.Dc Plasticity, diffusion, and creep
منابع مشابه
On the Stability of Dilatant Hardening for Saturated Rock Masses
Fissured rock masses tend to dilate as they are deformed inelastically toward failure. When the rock is fluid saturated and the time scale does not allow drainage, suctions are induced in the pore fluid, and by the effective stress principle the rock is dilatantly hardened over the resistance that it would show to a corresponding increment of drained deformation. This paper considers a compress...
متن کاملNumerical modelling of the underground roadways in coal mines– uncertainties caused by use of empirical-based downgrading methods and in situ stresses
Numerical modelling techniques are not new for mining industry and civil engineering projects anymore. These techniques have been widely used for rock engineering problems such as stability analysis and support design of roadways and tunnels, caving and subsidence prediction, and stability analysis of rock slopes. Despite the significant advancement in the computational mechanics and availabili...
متن کاملIn situ and induced stresses
Rock at depth is subjected to stresses resulting from the weight of the overlying strata and from locked in stresses of tectonic origin. When an opening is excavated in this rock, the stress field is locally disrupted and a new set of stresses are induced in the rock surrounding the opening. Knowledge of the magnitudes and directions of these in situ and induced stresses is an essential compone...
متن کاملRelationship between fracture dip angle, aperture and fluid flow in the fractured rock masses
Most of the Earth's crust contains fluids, and fractures are common throughout the upper part. They exist at a wide range of scales from micro-fractures within grains to major faults and shear zones that traverse the crust. In this paper, the stress-dependent permeability in fractured rock masses have been investigated considering the effects of nonlinear normal deformation and shear dilation o...
متن کاملAn Investigation of Abnormal Fluid Pressure within an Evaporitic Cap Rock in the Gavbandi Area of Iran and its Impact on the Planning of Gas Exploration Wells
A synthesis of well logs was carried out and drilling mud weight data were analyzed to figure out anomalous high fluid pressure within the Triassic evaporitic cap rock (the Dashtak formation) and study its impact on the geometry of anticlinal traps in the gas rich Gavbandi province located in the southeast part of the Zagros Mountains. The results indicated that the location of anticlinal traps...
متن کامل